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ACCELERATION OF THE PRESSURE CORRECTION 
METHOD FOR A ROTATING NAVIER-STOKES PROBLEM 

G. LONSDALE* AND J. E. WALSH 
Department of Mathematics, University of Manchester. Manchester M13 9PL. U.K. 

SUMMARY 

The behaviour of the pressure correction method is studied for the solution of the incompressible steady-state 
Navier-Stokes and continuity equations in a rotating cylindrical-polar co-ordinate system, the specific 
problem being that of laminar source-sink flow between two corotating discs. Modifications to improve the 
linearization and the handling of the rotation terms are introduced, and we compare three extended pressure 
correction schemes and also the use of a multigrid algorithm in part of the calculation procedure as a linear 
solver. 
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1. INTRODUCTION 

In this paper we consider the behaviour of the pressure correction method’ applied to the problem 
of laminar source-sink flow between two corotating discs, as in Chew.’ We also consider 
modifications and extensions of the basic method and the use of a multigrid algorithm in part of the 
calculation as a linear solver. 

A cylindrical-polar co-ordinate system ( I ,  8, z) rotating at angular velocity R (in the &direction) 
is used with variables and parameters as follows: 

U 

V 

W 

P 
P 
p’ = p - 1/2pR2r2 
P 
Q 
a 
b 
S 

radial velocity 
tangential velocity 
axial velocity 
pressure 
density (assumed constant) 
reduced pressure 
dynamic viscosity (assumed constant) 
source flow rate 
radial position of source 
radial position of sink 
distance between the discs 
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The incompressible steady-state Navier-Stokes and continuity equations are then 

i a  a apt 1 a au a2u u V 2  - - (pru2)+-(puw)= - - + p  -- r- f--- +2pizv+p-- ,  

i a  
- - ( p r u v ) + - ( p v w ) = p  -- I -  +1-2 -p--22pQu, 
P ar a Z  

i a  a 
- - ( p r u w ) + - ( p w 2 ) = - - + p  -- r- +z , ar aZ aZ 

r ar aZ ar [ a,) az2 r . 1  Y 

a [:ir( ;:) r 3 : 
ap’ [t:r( :) Z] 

i a  aw 
--(ru)+ - =o. ar aZ 

Boundary conditions for velocities are taken as follows: 

u = Q / ~ W S ,  u = O ,  w=O at r=a ,  b, 
u = v = w = O  at z=O,s.  

In the solution procedure we require boundary conditions only for a correction to the pressure, pp, 
not for the pressure itself; these conditions are taken to be 

app/ar = 0 at r = a, b, 
app/az = o at z = 0, S. 

A non-uniform staggered grid was employed as shown in Figure 1. Figure 1 also shows the 
points associated with the same index; the values u(i, j ) ,  w(i, j) refer to different spatial points from 
p(i, j ) ,  v(i, j ) .  The radial and axial velocities are calculated at points halfway between neighbouring 
points for pressure and tangential velocity. 

The finite difference equations are found by integration over control areas.3 Since the control 
areas for the non-uniform grid are rectangular and the equation is not necessarily based at the 
centre of the area, the finite difference equations are more general than the ones used by Chew2 on a 

Figure 1. Non-uniform staggered grid 0, pressure and tangential velocity; -+, axial velocity; 1, radial velocity; 
7 ,  associated points in indexing system 
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regular grid (and are given in detail in Reference 4). The finite difference replacements of the 
momentum equations (1H3) include the form of upwinding used by Patankar and Spalding;' this 
is referred to by them as a 'high lateral flux modification'. 

The linearization of the momentum equations is done by replacing the product of two variables 
by the product of one 'old' value and one 'new' value, for example in equation (1) 

i a  
- - (pru') is replaced by 1 
r dr  r ar 

(pruk+ luk), 

a 
aZ aZ -(puw) is replaced by d ( p u k + ' w k ) ,  

so that the finite difference approximation of (1) gives a linear equation for the new u iterate, uk+l ,  
with coefficients depending on the old iterates uk, wk. 

The geometry and fluid properties used for numerical tests are as follows: 

a=0019 m, b = 0.19 m, s = 0.0507 m, 
p =  1.78 x kgm- 's- l ,  p=1*225kgmp3, Q=2.761 x 10-4m3s-1. 

This corresponds to the test case used by Chew' with a mass flow parameter given by 

C, = Q p / p b  = 100.0. 

Most of the testing to compare the efficiency and behaviour of the basic pressure correction 
method with our various modifications was done at a rotation rate of R =  l.Orads-', 
corresponding to a rotational Reynolds number given by 

Re, = Rb'pJp 2: 2.5 x lo3. 

This rotation rate provides a sufficiently complicated flow to enable us to assess the behaviour of 
the different methods without requiring excessive computing. 

Because we need to cluster the grid points near the boundaries, the non-uniform grids used 
throughout are based on the zeros of the relevant shifted Chebyshev polynomial. For example, if 
we use n, radial pressure lines, their radial positions are given by 

ri=O~~{(b+a)-(b-a)cos[( i -O~5)n~n,]} ,  i =  1,2 . . . , n,. 

2. THE BASIC PRESSURE CORRECTION METHOD 

We now discuss briefly the pressure correction method as applied to the problem of Section 1. For 
details of the pressure correction method in general see References 1 and 5. 

The finite difference replacement and linearization of the momentum equations described in 
Section 1 leads to five-point difference equations for u, u, w at a point P of the form 

bpu, = CbiUi i + S", 
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where the summation Xi, refers to the four neighbouring points N, E, S, W on the grid. Note that 
the point P is different for each equation (Figure 1). 

The basic idea of the pressure correction method is that after calculating new values for the 
velocities from the linearized momentum equations, based on the old iterates for velocity and 
pressure, we use the continuity equation to make changes to the velocities and pressure in order to 
move closer to satisfying both the momentum equations and the continuity equation. 

To see this, let pk be the current pressure distribution and let u*, w* be the velocities resulting 
from solving the radial and axial momentum equations with this pressure distribution, so that 
pointwise we have 

i 

Note that we do not include the tangential velocity since it does not appear in the continuity 
equation and has no direct dependence on pressure. 

If pk were the correct pressure distribution, the velocities u*, w* would satisfy the continuity 
equation. However, this will not be the case in general. We therefore introduce changes to get new 
iterates u k + l ,  w k + l ,  pk+'  given by 

Uk+ '  =u* +6u, (10) 
W k + l -  - w  * ,6w, 
p k +  I = p k  + p p .  

The relations between these changes can be seen by substituting equations (10H12) into equations 
(8) and (9), giving 

ap'up=Caidui+ i A p ( ~ ~ s - ~ p n ) ,  (13) 

An equation for the pressure correction p p  is obtained by forcing the new u, w iterates to satisfy the 
continuity equation and using the relations between the velocity and pressure changes. However, 
the relations (13), (14) would lead to a complicated system of equations for p p .  Patankar and 
Spalding' avoid this by truncating (1 3) and ( 1  4) to get approximate relations between the pressure 
and velocity changes as follows: 

@up = A,(PP, - PP"), (15) 

C p J W ,  = CP(PPW - P P d  (16) 
Substituting (lo), (11) into the continuity equation with du, 6w given by (15), (16) gives a linear 
equation for the pressure correction p p .  Using this pressure correction, 6u, 6w are then calculated 
from equations ( 1  5), (1 6). 

We thus have the following basic pressure correction algorithm: 

(i) guess initial values for all variables at all the internal grid points; 
(ii) use the radial momentum equation to get updated U-values; 
(iii) use the axial momentum equation to get updated w-values; 
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(iv) calculate estimates of the variation of u, w with pressure gradient in the r,z-directions as in 

(v) calculate the pressure correction pp;  
(vi) update u, w, p according to (10H12); 
(vii) use the tangential momentum equation to get updated U-values; 
(viii) if the root-mean-square (RMS) values of changes made to all the variables are greater than 

some prescribed tolerance, repeat from (ii). 

(W,  (16); 

Before giving results which illustrate the behaviour of the above method, we note the following 
points. 

Solution of the pressure correction equations 

The solution of the linear equations for the velocities in our tests was by an alternating-line 
Gauss-Seidel (ALGS) algorithm using only one double sweep. In the first set of tests the iterative 
solution of the equation for the pressure correction used a fixed number of double sweeps of the 
ALGS algorithm; in Section 4 we discuss the use of a linear multigrid algorithm. The emphasis on 
the solution of the pressure correction equations is in line with the behaviour of the algorithm as 
observed by Chew’ and was also supported by numerical experiments. 

Under-relaxation 

In order to obtain a convergent process, it is essential to use under-relaxation for the four 
variables u, v, w, p as follows. For the variable x (where x represents one of the velocities) let the 
updated variable from the solution of the momentum equations be x, let the old x iterate be xk and 
the under-relaxation parameter be a,. Then the updated x variable actually used, x*, is given by 

x* = xk + a,(x - xk) ,  O < a, < 1. 

The new pressure iterate is given by modifying equation (12) to 

p k +  1 = p k  + a,pp, 0 < ap  < 1. 

Initial values 

For all tests the initial values were taken to be the values corresponding to solid body rotation at 
the rotation rate used for the test, together with zero reduced pressure (note that the co-ordinate 
system is rotating), i.e. u = u = w = 0, p’ = 0. 

Convergence criterion 

As the variables vary greatly in magnitude, the convergence criterion was based on relative 
rather than absolute changes. The RMS was used to measure the variables and the changes made 
to the variables across the grid, the iteration being terminated when the relative change was less 
than 1.0 x for all four variables. 

Cost estimates 

In order to compare the efficiency of different methods, it is necessary to make some estimate of 
the computational cost and also of the amount of computer storage needed. For N mesh points 
there are 4N variables and 20N coefficients; with N typically around 1000 to give reasonable 
accuracy, storage requirements are large. We therefore employed two estimates of cost as follows. 
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When implementing the pressure correction algorithm there are two choices for the handling of the 
linearized equations: the coefficients may be calculated once only and stored whenever possible, or 
they may be recalculated as needed. Our actual program followed the second approach; hence a 
comparison of the computing times of various methods is a measure of the relative efficiencies of 
the methods when storage is restricted. In order to reflect the situation when storage is unrestricted, 
we also evaluated the computation required in terms of a standard work unit, equal to the number 
ofarithmetic operations per point for one double sweep of the ALGS algorithm, assuming storage 
of the coefficients. The work units for the various processes within the iteration, for the basic 
method and all the other methods discussed in this paper, can be found in Reference 6. When 
calculating work units, boundary effects on the grid operations are neglected. 

Tests for the caseQ= 1.0 were carried out on 17 x 17 and 33 x 33 Chebyshev grids. In these tests 
we did not seek to optimize the under-relaxation parameters to any fine degree, our aim being to 
get a general impression of the behaviour. The values of 0.5 for the parameters a", a,, 01, were those 
used by Chew,2 and higher values failed to give convergence. In testing for the size of c l P ,  increments 
of 0.1 only were considered. 

Table I gives the best performances (in terms of work units and CPU times) of the basic method 
on the two grids above. Note that the work units for each grid are based on the number of 
operations per point for that grid. 

For both grids convergence was not obtained for higher values of 01,. For the 17 x 17 Chebyshev 
grid convergence was not obtained for ct, =0.2 when fewer than 40 double sweeps for pressure 
correction were carried out. 

3. MODIFICATIONS TO HANDLE THE COUPLING OF THE EQUATIONS 

While the use of small values of up is necessary to prevent divergence in the early stages of the 
iteration, later stages show a very slow steady convergence. We therefore turn our attention to the 
coupling, which is the main factor which slows up convergence, and try to improve on the 
linearization used. For high rotation rates the dominant terms in the radial momentum equation in 
the main core of the region are -dp'/ar and 2pslu. So although we are trying to find the radial 
velocity from the radial momentum equation, the dominant terms for that equation are the 
pressure gradient and the rotation term involving tangential velocity. We thus seek modifications 
to reflect the strong coupling of the radial and tangential momentum equations-ideally we would 
carry out a simultaneous Newton solution for these two equations, but this would be expensive. 

Gosman et al.' incorporate a modification to the radial momentum equation of the form 

a(p/r ) (Qr  + u)(Uold- U",,), (17) 
motivated by the remark that if u increases, a decrease in u is expected, requiring a reduction in the 

Table I .  Performance, and parameters used, for the basic pressure correction method for the case 
n = 1.0 

Number of ALGS 
sweeeps for Iterations CPU 

pressure to Approximate seconds 
Grid e,, avr a, ap correction convergence work units (CDC 176) 

17x 17 0.5 0.2 40 184 lo000 162.6 
33 x 33 0.5 0.1 10 195 7190 370.2 
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centrifugal force term in the radial momentum equation. We now analyse the effect of this term and 
discuss the value that should be chosen for the constant a. We then present numerical results to 
support the relation between a and the rotation rate. 

Let us first consider the linearization of the radial and tangential momentum equations used in 
the method of Section 2. Equations (1) and (2) may be rewritten in the form 

(19) 
P a  a uu 

pLu - -- (ruu) - p - (uw) - 2pQu - p- =0, r ar az r 

where L is the linear operator given by 

Let uk, uk be old iterates and uk+ ', uk+ ' the new iterates given by uk+ = uk + bu, uk+ ' = uk + bu, and 
assume that the axial velocity w remains fixed. Equation (18) is then linearized for solution as 

Assuming that we solve the radial momentum equation before the tangential equation, we have 
two choices for the linearized tangential momentum equation: either 

or 

Let us consider a simultaneous full Newton iteration for the radial and tangential momentum 
equations (18) and (19) respectively as follows: 

a P JP' pLuk+ ' - {r[(uk)2 + 2uk6u]) - p - (uk+ ' w )  + 2pRuk+' + -[(u')' + 2ukbu] = -, (23) r d r  a2 r ar 

The terms present in the full linearization of the radial momentum equation (23) but neglected in 
(20) are 

(25) 
2P P a  -(Qr + uk)bu - - -(rukbu). 
r r ar 

Similarly the terms present in the full linearization of the tangential momentum equation (24) but 
neglected in (21) are 

(26 ) --(2Rr+uk)6u---(rukbu). P P a  
r r ar 
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We note that the form (22) of the tangential momentum equation corresponds exactly to the 
Newton linearization (24). 

By using a relationship between 6u, So, the neglected terms (25), (26) may be included as a 
modification to the previously used linearization while retaining uncoupled equations. This 
relationship can be obtained by considering the maintenance of continuity in the direction of the 
rotation. While the axisymmetry of the problem implicitly forces rotational continuity, we take the 
viewpoint that calculating the next u-iterate from the linearized radial momentum equation, using 
old iterates, for u, leads to a violation of rotational continuity. 

Consider the full continuity equation, retaining the 6 derivative in line with the above comment, 
rewritten in the form 

au aU aw 
ar a6 az u + r -  +- +r-=O.  

Replacing the derivatives in (27) by small increments gives 

6u 6v 6w 
u+ r -  + - +r-  = O .  

6r 66 6z  

If the velocity w is taken to be fixed, this gives the equation 

6u 6v 
u +r-  + - = 0. 

6r 68 

We have previously stated that it is in the core region that the rotational terms are dominant, so it is 
in this region that we aim to improve the handling of the coupling between the radial and tangential 
momentum equations. Restricting our attention to the core region, we make the further 
assumption that u N 0 which, included in (28), gives 

66 
Sr 

60% -r-6u. 

With 66=KR for some constant K ,  we then have 

r!J 
Sr 

6 U %  -- K6u. 

Using the relationship (29) in the expression (23) gives the following modification to the radial 

(30) 

CI = 2rRK/6r .  (31) 

momentum equation: 
P P a  -a-(!Jr+vk)6u---(ruk6u),  
r r ar 

with 

For large R we can neglect the second term in the expression (30), giving us the Gosman 
modification (17) with parameter a given by equation (31). We note that because of the sign of the 
term in (26), a similar modification to equation (21) would lead to a loss ofdiagonal dominance in 
the discretized equation. However, as noted above, the use of the form (22) for the tangential 
momentum equation requires no additional terms. 

The Gosman modification (17) represents an improved linearization of the radial momentum 
equation with a correction that gives improved continuity in the 6-direction. The above discussion 
suggests that the parameter M should be a function of r .  However, this would make the procedure 
more complicated and our tests have been based on a constant a. 
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Table 11. Performance, and parameters used, for the pressure correction method modified by 
term (1 7), for R = 1.0 

Number of ALGS 
sweeps for Iterations CPU 
pressure to Approximate seconds 

Grid ClP fx correction convergence work units (CDC 176) 

17x  17 0.3 25.0 10 66 1640 20- 1 
33 x 33 0.1 75.0 10 168 4170 210.7 

Numerical results confirmed that the best value of the parameter a in (17) should be increased as 
the mesh size decreases. ‘Optimum’ values for the 17 x 17 and 33 x 33 Chebyshev grids at rotation 
rate Q = 1.0 were found to be 25.0 and 75.0 respectively. 

Numerical testing was also undertaken to support the linear variation of the ‘optimum’ value of 
a in (17) with rotation rate as predicted by (31); these tests used the non-linear multigrid algorithm 
of Reference 8. For rotation rates 1~0,10~0,20~0,30~0 the optimum values of 01 were found to be 25.0, 
100~0,180~0,260~0 respectively. Another important feature shown up by the tests was that the use of 
values of a smaller than the optimum values required greater under-relaxation of the pressure 
correction step to maintain convergence, while values higher than the optimum merely gave slower 
convergence. 

Table I1 shows the effect of including the modification (17) in the radial momentum equation. 
The values of a used for the two grids were found to be ‘optimal’ from numerical experiments and 
the values of a p  were those which gave most efficient convergence. The values of a,, a,, a, were as in 
Table I. 

Comparing Table I1 with Table I clearly shows a large gain in efficiency by including the 
Gosman term (17) with a suitable value of a. 

We now take as our standard method the basic algorithm modified by the Gosman term (17), 
and for the case R =  1.0 the optimum parameter values given in Table 11. 

4. MULTIGRID METHOD FOR SOLVING THE PRESSURE CORRECTION 
EQUATION 

In this section we consider the use of a multigrid algorithm for the solution of the pressure 
correction equation. Attention is restricted to the pressure correction equation, since it is only for 
this equation that a significant accuracy is required at each major step in order that the non-linear 
iteration should converge. 

For a complete description of multigrid ideas and algorithms see References 9 and 10. We give a 
brief outline of the basic multigrid principles and algorithms to be used. Efficient multigrid 
algorithms arise from the interaction between the smoothing properties of a relaxation method, 
such as the alternating-line Gauss-Seidel iteration, and coarse grid correction. By local Fourier 
analysis it can be shown that relaxation methods, without convergence acceleration parameters, 
are efficient at  reducing the amplitude of high-frequency components of the error, and thus of the 
algebraic residual, while their ultimate slow convergence is due to the low-frequency components 
corresponding to the largest eigenvalues of the iteration operator. Relaxation methods can thus be 
viewed as efficient smoothers. 

The principle of coarse grid correction can be seen by considering the specific problem of solving 
the pressure correction equation, which is a linear equation. Let the grid for pressure be R,  and let 
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G(Rh) be the space of all grid functions on R,. Then the pressure correction equation can be written 
in the form 

Lh PPh = f h  ( R  h), (32) 

where pph, fheG(Rh), L,: G(R,)+G(R,) and we assume Lhl to exist. Let pp’, be our current 
approximation to p p h  and define the algebraic defect (or residual) as 

dh = f h  - L h P P i .  (33) 

Then the exact solution pph is given by 
. .  

pph = PPi + qi7 

where q{ is the solution of the defect equation 

L,qh = dh. (34) 

If the high-frequency components of the defect are negligible relative to the low-frequency 
components, we can represent equation (34) on a coarser grid, R,. The exact definition of ‘low’ and 
‘high’ frequencies depends on the relationship between the two grids-a high-frequency 
component is one which cannot be represented on the coarse grid. We thus get the coarse grid 
equation 

LHLjjH = djH, (35) 

where dim(G(R,))@dim(G(R,)), L,: G(R,)-+G(R,) and we assume L i l  to exist. If we solve 
equation (35), we can interpolate qk to the finer grid, giving an approximation S’, to qh and taking 
pph+ = p p {  + &i, as our new approximation to p p h .  

The approximation to the solution on the fine grid should be smooth enough to allow the defect 
equation to be represented on a coarse grid. This criterion is satisfied by using a suitable relaxation 
method before transferring the defect equation to the coarser grid. 

The idea may then be extended to the solution of the coarse grid equation (35), leading to a series 
of coarser and coarser grids. Thus the complete multigrid method combines the use of a relaxation 
method on each grid with correction on coarser grids. Neither process alone gives a satisfactory 
method; it is only when a suitable combination of the two methods is used that very good 
convergence and efficiency properties can be obtained. 

The algorithm used for the problem of Section 1 was based on a cycling correction ~ c h e m e . ~ , ~ O  
The use of non-uniform grids meant that some of the multigrid components needed to be modified. 
In particular, the grid coarsening was done by taking every other fine grid line as a coarse grid line; 
this coarsening means that the first and last grid lines remain adjacent to the boundaries and we use 
numbers of grid lines of the form 2”“. 

The component multigrid operators were as follows: relaxation-alternating-line Gauss-Seidel; 
restriction-half-weighting operator modified to take account of the non-uniform grid;I0 
interpolation-fine grid corrections and initial approximations were obtained using bilinear 
interpolation. A higher-order interpolation for the initial fine grid approximations was not used 
because of the increased cost implied by the non-uniform grid. Two types of multigrid algorithm 
were used, dependent on the initial approximation used on the finest grid: the FMG version used 
an initial approximation interpolated from a coarse grid solution obtained by multigrid iterations 
on the coarser grids; the MG version took the initial fine grid values corresponding to solid body 
rotation as in Section 2. For the R= 1.0 test case the FMG version of the multigrid algorithm 
proved to be more efficient than the M G  version (in terms of the overall cost to convergence), the 
additional cost of calculating an initial fine grid approximation being compensated for by 
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increased accuracy in the pressure correction solution and a reduction in the number of outer 
iterations required. However, for higher-Reynolds-number flows, with thinner boundary layers, 
starting the multigrid solution process on the coarsest grid can lead to bad initial solutions on the 
finest grid, making it necessary either to increase the number of relaxation sweeps before and after 
coarse grid correction or to increase the amount of work on the coarse grids. In this case it is more 
efficient to start the calculation on the finest grid (the MG mode). 

Table I11 gives the performance of the pressure correction method with and without the use of 
the multigrid algorithm, for the test case R = 1.0 and for the two previously considered grids. For 
both grids the multigrid algorithm used three grids, V-cycles, one ALGS sweep before and after 
coarse grid correction and two ALGS sweeps on the coarsest grid, this scheme having been found 
to be most efficient in terms of the overall work units and CPU times of the outer iteration. The 
under-relaxation parameters and values of c( (in equation (17)) for both grids are exactly as in 
Table 11. 

Table I11 shows a clear advantage in employing the multigrid algorithm, the reduction in CPU 
time being approximately 41% for both grids. 

5. EXTENDED PRESSURE CORRECTION SCHEMES 

We now consider three separate schemes which aim to improve the pressure correction method via 
the handling of the pressure correction equation. 

Method I 
The first method is that proposed by Connell and Stow.' ' An iterative scheme is introduced with 

the aim of approximately solving the full pressure correction equation, given by using not the 
truncated velocity-pressure relations (15), (16) but the full relations (13), (14). 

The iteration replacing steps (v), (vi) in the basic algorithm of Section 2 is as follows: 

(1 )  using the usual pressure correction equation obtained from the truncated relations ( 1  3), (16), 

(2)  For j = 1 ,  n2 
calculate a pressure correction ppo;  

(a) calculate Suj-  l ,  Swj-' from the truncated relations 

Table 111. Comparison of ten ALGS sweeps with the multigrid algorithm as the linear 
solver for pressure correction, for t2 = 1.0 

Linear solver Iterations Approximate CPU 
for to work seconds 

Grid pressure correction convergence units (CDC 176) 

10 ALGS sweeps 66 1640 20.1 
FMG 62 1220 11.7 
10 ALGS sweeps 168 4170 210.7 
FMG 164 3240 123.6 

17x  17 

33 x 33 
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(b) calculate an improved pressure correction pp' from the approximate full relations 

a,duj, = Cai6ui- + A,(ppC-  p p i ) ,  
i 

C,bWj, = Cc&wj-  + C , ( p p i , - p p { ) ,  (39) 
i 

with 6u;, 6w', eliminated by using continuity; 
(3) Update u, w, p by 

U k + l -  - u  * +6un2-1, 
W k + l -  * -w +6wn2-l 

pk+' =pk+cc,pp"2. 

Connell and Stow" use a fixed number n, of ALGS sweeps for each of the pressure correction 
solutions (steps 1 and 2b above). In later results we also use the multigrid algorithm for these 
solutions. 

Initial numerical tests with the algorithm modified as above were undertaken on the 17 x 17 grid 
with under-relaxation parameters and value of LY given by the optimum values for the case R = 1.0 
as in Section 2. Our aim was to investigate the overall convergence of method I with respect to the 
two parameters n,, n2. Table IV shows the results of these tests. 

The results in Table IV suggest the choice of parameters n, =4, n ,  = 1.  This combination was 
used in later tests with the ALGS algorithm as linear solver for the pressure correction; the choice 
n2 = 1 was also uscd when employing the multigrid algorithm. Taking n, = 3 gave divergence in 
most cases. 

Using the values n, =4, n ,  = 1 it was found that under-relaxation of the pressure correction, on 
both 17 x 17 and 33 x 33 grids, was no longer necessary, i.e. a value of up= 1.0 could be used. 
However, for the 33 x 33 grid a value of up = 0.5 was found to give faster convergence. Just as a large 
number of ALGS sweeps was no longer required for the pressure correction solutions, the greater 
accuracy provided by the FMG mode, rather than the MG mode, of the multigrid algorithm was 
no longer required. Thus the MG mode proved to be more efficient in terms of the overall cost to 
achieve convergence. 

Table IV. Performance of method I; 17 x 17 grid, R =  1.0 

n1 1 2 

1 Iterations to convergence 189 130 
Work units 3750 3120 

Work units 2440 2080 
3 Iterations to convergence 85 66 

2030 1980 Work units 
4 Iterations to convergence 76 63 

1960 2080 Work units 
5 Iterations to convergence 73 62 

Work units 2030 2230 

2 Iterations to convergence I12 77 
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Table V gives the best performances of method I, using both the ALGS algorithm and the 
multigrid algorithm as linear solvers for the pressure correction for the case a= 1-0. 

Table V shows up clearly the importance of storage availability when assessing the relative 
efficiencies of two methods. If we are in the situation where storage is unrestricted, then by 
considering work units we can see: 

(a) there is only a marginal gain in using the multigrid algorithm to replace the four ALGS 

(b) method I is more efficient than the basic method (cf. Table 111). 
sweeps; 

However, if storage is restricted, comparing CPU times from Tables I11 and V we see that method I, 
without the multigrid algorithm, is now less efficient than the basic method. 

Method I 1  

Method I1 is the modification to the pressure correction method proposed by Van Doormaal 
and Raithby.IZ Instead of the truncated pressure-velocity relations (15), (16) they introduce an 
approximation to the full relations as follows. 

If we subtract Ciai6up from both sides of equation (13) and subtract Cici6wp from both sides of 
equation (14), we get 

Van Doormaal and Raithby” argue that the changes 6up, 6ui and 6wp, 6wi will be of the same 
order, so that ignoring the terms 

Cai (6ui - Jup), Cci (6wi - 6wp) 
i I 

will lead to a consistent approximation to the full relations (13), (14). 
When obtaining the pressure correction equation, they use the relations 

Table V. Performance of method I; l2= 1.0 

Linear solver Iterations Approximate CPU 
for pressure to work seconds 

Grid correction z,, convergence units (CDC 176) 

4 ALGS sweeps 1 .o 39 lo00 28.1 
1 7 x 1 7  MG 1 .o 37 950 10.7 

4 ALGS sweeps 0.5 107 2760 319.1 
3 3 x 3 3  MG 0.5 98 2520 115.1 
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Here we note that Van Doormaal and Raithby12 assume that under-relaxation is implemented 
inside the linear solver rather than in the way described in Section 2. This is of great practical 
importance for the axial momentum equation, where we have cp = Xici which would make 6wp 
infinite.4 Method I1 was thus implemented using the damped relations 

(Cp-  P P d  (43) 

Although Van Doormaal and Raithby state that the pressure correction should not be under- 
relaxed, this leads to divergence for the case R =  1.0 (with a,, a,, a,,,, a as in Tables I and 11). 
However, less accuracy was required for the solution of the pressure correction equation, so that in 
terms of overall cost it was more efficient to use just three ALGS sweeps, or in the case of the 
multigrid algorithm the MG rather than FMG mode. Table Vl gives the best performances of 
method I1 for the R =  1.0 case using the 17 x 17 and 33 x 33 grids and values of a,, a,,, a,,,, a as in 
Tables I and 11. 

Table VI shows a reduction in both work units and CPU time to convergence over the basic 
method (of Table TIT), this reduction being at the cost of very little change to the program. The 
benefit in using the multigrid algorithm can also be seen here. 

Method I I I  

Method I11 is the revised pressure correction method of Patankar.’Theessence ofthe method is 
that the previously derived pressure correction equation is used to correct the velocities, but a 
separate pressure equation is used to calculate the pressure before the solution of the momentum 
equations. The advantage of this scheme is that there is no need to use a guessed pressure; if the 
exact velocities were provided as starting values, the exact pressure would be calculated and the 
iterative process would not move away from the correct solution, as happens with the normal 
pressure correction method. 

The pressure equation is derived from the momentum and continuity equations as follows. 
Defining variables ti, i j  by 

Caiu i  + S u  

P 2 (44) 
* I  u = ~ 

all 

c c i w i  + s,,, 
ijp = -’ , (45) 

CP 

Table V1. Performance of method I1 (Van Doormaal and Raithby terms); R =  1.0 

Linear solver Iterations Approximate CPU 
for pressure to work seconds 

Grid correction xp convergence units (CDC 176) 

3 ALGS sweeps 0.7 66 1200 11.3 
0.7 54 1010 9.4 

3 ALGS sweeps 0.3 162 2940 112.5 
0.3 115 2160 78.0 

1 7 x 1 7  MG 

3 3 x 3 3  MG 
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the momentum equations (5),  (7) can be rewritten in the form 

ap~p=aptip+Ap(Ps-P,),  (46 1 
cpwp =CpG'p+Cp(Pw-Pe). (47) 

Equations (46), (47) have exactly the same form as the truncated relations (15), (16), so that 
substituting into the continuity equation will give an equation for pressure with the same 
coefficients as the pressure correction equation. The difference between the two equations occurs in 
the right-hand side: the pressure correction equation depends on u*, w*; the pressure equation 
depends on ti, G. 

The basic algorithm is then modified as follows: 

(a) before step (ii) calculate 6, $, solve the pressure equation and update the pressure; 
(b) in step (vi) only u, w are updated. 

Numerical tests using method 111, at rotation rate R =  1.0, showed up several features: 

(a) Under-relaxation of the pressure equation was unnecessary and was less efficient. 
(b) A gain in efficiency could be achieved by using three rather than ten ALGS sweeps for the 

solution of the equations for pressure and pressure correction. 
(c) While a good initial approximation to the fine grid pressure correction may be obtained by 

multigrid iterations on coarser grids (the FMG mode), this cannot be done satisfactorily for 
the pressure, which varies too much to be represented well on the coarse grids. Thus the 
multigrid solution of the pressure equation started on the fine grid with the latest pressure 
iterate. 

The VII gives the best performances of method I11 for the R =  1.0 case using 17 x 17 and 33 x 33 
grids, a,, u", a,,,, a as in Tables I and I1 and with ap= 1.0. 

Comparisons with the other extended methods are unfavourable. For both grids the work units 
are increased from those achieved by method I and the CPU times are greater than those of 
method 11. 

6. CONCLUSIONS 

The inclusion of the term (17) in the basic pressure correction method, to improve the handling of 
the rotation terms, has been shown to give a great improvement in the convergence of the pressure 
correction method, provided a suitable value for the parameter a in (1 7) can be chosen. 

Using the multigrid algorithm as a linear solver for the pressure correction leads to a gain in 
efficiency of around 40% in CPU time. 

Table VII. Performance of method 111, Patankar's revised method; clp= 1.0 

Linear solver Iterations Approximate CPU 
for pressure and to work seconds 

Grid pressure correction convergence units (CDC 176) 

3 ALGS sweeps 52 1190 13.2 
Multigrid 42 1080 11.8 
3 ALGS sweeps 137 3070 137.2 
Multigrid 120 3080 135.4 

17x 17 

33 x 33 
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Of the extended methods it is method 11, combined with the use of the multigrid algorithm, 
which gives the best improvements in overall efficiency. In comparing methods, the importance of 
storage strategy in assessing the efficiency has been shown. This is because of the amount of work 
involved in recomputing coefficients when storage is limited. If storage is unrestricted, method I 
without the multigrid algorithm gives a significant gain in efficiency over the basic method; 
however, if storage is restricted, the same method is less efficient than the basic method. A further 
point is worth bearing in mind when comparing the extended methods. Methods I and 111 both 
appear to be relatively insensitive to the choice of up, and for the sZ= 1.0 case neither method 
required under-relaxation in the pressure correction for convergence, i.e. up = 1 .O could be used. 
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